| The |
| :---: | :---: |
| University |
| Sheffield. |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Learning objectives

- Understand the role of multivariable regression models in controlling confounding and prediction.
- Interpret scatterplots for continuous bivariate data in terms of linearity, direction and strength of an association.
- Describe what is meant by a linear relationship; understand the concept of the regression line and how the linear regression equation can be used to model it.
- Be able to correctly interpret the conceptual and practical meaning of model coefficients, their confidence intervals and p-values in linear, logistic, Poisson and Cox regression analyses.
- Interpret in context the results of multivariable regression analyses published in the medical literature.

Overview of
regression models

Conceptual framework

Essential work in clinical research pertains to three fundamental subtypes of medical "gnosis": \qquad
$>$ diagnosis - knowing if disease is present,
$>$ aetiognosis (aetiology) - knowing what factors cause the \qquad disease,
> prognosis - knowing about the future course of a patient's current standing, including how prospects would depend on the choice of intervention or treatment.

Multivariable (multiple) regression analysis is a valuable tool for diagnostic, prognostic and aetiognostic research problems.
\qquad
\qquad
\qquad
\qquad

Important applications of regression (1)

1. Develop a model for prediction of a clinical outcome

- estimate the risk of future outcomes in individuals based on different combinations of clinical and non-clinical characteristics,
- classify individuals as likely to experience the outcome or not,
- develop prediction rules (scoring systems) to direct further diagnostic evaluations, treatments etc

Prediction research includes both prognostic and diagnostic studies. Results are widely used in clinical practice:

- Apgar score to determine the prognosis of new-borns,
- APACHE and SAPS scores to predict hospital mortality in critically ill patients,
- Prenatal testing to assess the risk that a pregnant woman will give birth to a baby with Down's syndrome. BMJ 2009;338:b375

Example (1): Predicting Renal Artery Stenosis

- Diagnostic gold standard is renal angiography (but invasive \& costly).
- Can we develop prediction rule for RAS from clinical characteristics, that can be used to select patients for renal angiography?
- Logistic regression analysis was performed with data from 477 hypertensive patients who underwent renal angiography.
- Diagnostic accuracy of the regression model was (similar to that of renal scintigraphy): sensitivity $=72 \%$ \& specificity $=90 \%$.
- It can help to select patients for renal angiography in an efficient manner. \qquad
Ann Intern Med 1998;129(9):705-11

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Important applications of regression (2)

2. Isolate the effect of a single variable on a clinical outcome: \qquad

- Emphasis on a single effect (e.g. a treatment, an intervention, a risk factor).
- Need to address this in a multivariable context to control confounding (RCTs are not always possible):
- In a situation of confounding, the crude (unadjusted) data may give us the wrong picture of the effect of the study variable,
- other variables may be exaggerating the strength of the effect or concealing some or all of it

Example (2): Impact of nosocomial infection on mortality

Crude vs. Adjusted Effects

- Crude (or unadjusted): does not take into account the effect of confounding variables
- Adjusted: accounts for the confounding variable(s) Generated using multivariate regression analysis
- Confounding is likely when:

$$
\begin{aligned}
& \mathrm{OR}_{\text {crude }} \neq O \mathrm{OR}_{\text {adjusted }} \quad \text { (logistic regression) } \\
& M D_{\text {crude }} \neq M \mathrm{MD}_{\text {adjusted }} \quad \text { (linear regression) } \\
& I R R_{\text {crude }} \neq I R R_{\text {adjusted }} \quad \text { (Poisson regression) } \\
& H R_{\text {crude }} \neq H R_{\text {adjusted }} \quad \text { (Cox regression) }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Adjusted effects: terminology

The adjusted OR is 3.6 (95\%CI: 2.1 - 6.1) \qquad

This is an independent or direct effect over and above the effects of the other variables. \qquad

It was calculated after accounting (adjusting, correcting, controlling, allowing) for the effects of other variables in the regression model.

There may still be residual confounding if we missed important "third" variables in the model
(don't need to worry about this in RCTs)

Important applications of regression (3)

3. Identify multiple independent predictors of a clinical outcome and understand how they jointly affect the outcome
> "independent" in the sense they that have an effect over and above other measured variables.
$>$ need to consider other complexities of how predictors jointly influence the outcome:

- confounding
- effect modification (interaction)
- mediation ("intermediate" variables)

Important applications of regression (4)

4. Covariate adjustment to improve efficiency in RCTs
> The strength of randomization is that comparability is created between the treated groups.
> No systematic confounding can hence occur in RCTs, but random imbalance might occur!
> Some measured baseline variables may be strongly predictive of outcome.

Regression analysis is used to correct for such random imbalances. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example (4): Malaria vaccine trial

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|l|l|l|l|}\hline \text { Gexafcal } & \text { Examples recap } & \\ \hline & \text { Example } & \begin{array}{c}\text { Clinical } \\ \text { objective }\end{array} & \begin{array}{c}\text { Statistical } \\ \text { objective }\end{array}\end{array} \begin{array}{c}\text { Regression } \\ \text { type }\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Responses \& predictors

\qquad

- Regression relates two kinds of variables:
- Outcome (or response or dependent) variable: for example
\qquad
- Blood pressure
- 90 day mortality
- Number of CHD admissions
- Time to infection \qquad
- Explanatory variables (or predictors or independent): e.g.
- age \qquad
- sex
- severity of illness
- comorbid conditions
- treatment type

	Common Regression Models		
Model	Outcome	What is modelled?	Measure of effect
Linear regression	Continuous	Mean	Mean difference (MD)
Logistic regression	Binary	Log(odds)	Odds ratio (OR)
Poisson regression	Binary (count data)	Log(incidence rate)	Incidence rate ratio (IRR)
Cox regression	Time to event (survival time)	Log(hazard rate)	Hazard ratio (HR)

Simple linear regression

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple linear regression

\qquad

- $\mathrm{Y}=$ continuous outcome.
$-\mathrm{X}=$ explanatory variable (any type)
- "Simple": only one X variable.
- Aim: Model the dependency of Y on X.
- How does the mean of Y change with X ?
- E.g. How does FEV $(=Y)$ depend on age $(=X)$ in children and adolescents?
- Is there a "linear relationship"? If so,
- How much increase in FEV do we see, on average, for an increase in age by 1 year?
- What average FEV would we expect for a given age?

| Scatterplot: |
| :--- | :--- |
| visualizing the relationship between two numerical variables |

Frctical Nombors		
Scatterplots		
Y	${ }^{\text {................. }}$	\quad $\quad \because$ \quad
A perfect no relationship		A real-life no relationship
$Y=\mathbf{a}$		Mean $\mathrm{Y}=\mathrm{a}$
$\mathrm{b}=0$		$\mathrm{b}=0$

The slope coefficient \mathbf{b} tells us if there is a correlation
Scatterplots
A non-linear relationship
Cannot be modelled using a straight line equation
Linear regression cannot handle this directly

Simple linear regression example

\qquad

- Data for 654 children and adolescents:
- FEV tends to increase with age, on average: how can we quantify this effect?

The regression line (the linear regression model)
The regression line can be represented numerically by an equation, which includes two coefficients:
\star the intercept a (the mean value of the outcome, when the predictor variable is equal to zero)

* and the slope \boldsymbol{b} (the average change in the outcome for a unit change in the x variable):

```
Outcome variable
Predictor variable
Mean \(y=a+b x\)
Intercept Slope
\(\mathrm{b} \rightarrow\) average change in y for a unit change in x
```


\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mathematical estimation of the best fitting line

- The standard way to do this is using a method called least squares using a computer.
- The method chooses a line so that the square of the vertical distances between the line and the point (averaged over all points) is minimised.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Uses of linear regression

\qquad
>Quantify a linear association
e.g. how much increase in FEV we see on average for a year increase in age
\Rightarrow Predict
e.g. what average level of FEV would we expect for a given age, and
how precise our estimate is for a given age
> Adjust
e.g. what the association between FEV and Age is,
adjusting for the effect other factors
such as gender, height and smoking.

Multiple linear regression model

Simple linear regression model:

$$
\text { mean } Y=a+b X
$$

\qquad
extents to:

Multiple (multivariable) linear regression model:

$$
\text { mean } Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots
$$

Slope coefficients b_{i} show the strength and direction of association of Y with each of the X_{i} 's.

Regression analysis produces confidence intervals for b,'s and p-values to test the null effect hypotheses $\mathrm{H}_{0}: \mathrm{b}_{\mathrm{i}}=0$

Interpretation of slope coefficients

\qquad
Multiple (multivariate) linear regression model:

$$
\text { mean } Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots
$$

Slope coefficients b_{i} quantify the association between Y and each of the X_{i} 's:

Slope $b_{i}=$ average change (mean difference) in Y
per unit increase in X_{i},
adjusted for all other variables in the model \qquad

Intercept $\mathrm{a}=$ mean Y value when all X_{i} are zero
(usually of no practical meaning)

Golkaticl Nemberex			45
Example: Effect of chronic hypertension on mean birth weight values (g), multiple linear regression ($n=1,938$ pregnant women), France, 1991-1993 Am J Epidemiol 1997;145(8):689-95.			
Variable	b coefficient	SE	P value
Chronic hypertension ($0=$ No, $1=$ yes)	-161	48	< 0.001
Smoking ($0=\mathrm{No}, 1=\mathrm{yes}$)	-113	24	< 0.001
Weight at initial visit (kg)	8	1	< 0.001
Mother's height (cm)	9	2	< 0.001
Age (yrs)	1	21	0.76
Multiparous ($0=\mathrm{No}, 1=\mathrm{yes}$)	120		<0.001
Ethnic group of origin (Ref. = Western			
North African	108	37	0.004
Sub-Saharan African	-140	52	0.007
Other origin	19	33	0.560
Educational level (Ref. = University)			
Primary school	-43	31	0.160
Secondary school	-65	25	0.008
Technical school	-50	33	0.130

Example: Effect of chronic hypertension on mean birth weight values (g), multiple linear regression ($n=1,938$), France, 1991-1993 Am J Epidemiol 1997;145(8):689-95.			
Variable	b coefficient	SE	P value
Chronic hypertension ($0=\mathrm{No}, 1=\mathrm{yes}$)	-161	48	<0.001
Smoking ($0=$ No, $1=$ yes)	- 113	24	<0.001
Weight at initial visit (kg)	Chronic hypertension is of principal focus, but other variables are included since the authors believed that they needed to be adjusted for.		
Mother's height (cm)			
Age (yrs)			
Multiparous ($0=$ No, $1=$ yes)			
Ethnic group of origin (Ref. = Western European)			
North African	108	37	0.004
Sub-Saharan African	-140	52	0.007
Other origin	19	33	0.560
Educational level (Ref. = University)			
Primary school	-43	31	0.160
Secondary school	-65	25	0.008
Technical school	-50	33	0.130

			50
Example: Effect of chronic hypertension on mean birth weight values (g), multiple linear regression ($n=1,938$), France, 1991-1993 Am J Epidemiol 1997;145(8):689-95.			
Variable	b coefficient	SE	P value
Chronic hypertension ($0=$ No, $1=$ yes)	-161	48	< 0.001
Smoking ($0=\mathrm{No}, 1=\mathrm{yes}$)	-113	24	< 0.001
Weight at initial visit (kg)	8	1	< 0.001
Mother's height (cm)	9	2	< 0.001
Age (yrs)	Continuous predictors do not have a reference category.		${ }^{7}{ }^{6}$
Multiparous ($0=\mathrm{No}, 1=$ yes)			001
Ethnic group of origin (Ref. $=$ Western Europe			
North African	108	37	0.004
Sub-Saharan African	-140	52	0.007
Other origin	19	33	0.560
Educational level (Ref. = University)			
Primary school	-43	31	0.160
Secondary school	-65	25	0.008
Technical school	-50	33	0.130

Example: Effect of chronic hypertension on mean birth weight values (g), multiple linear regression ($n=1,938$), France, 1991-1993 Am J Epidemiol 1997;145(8):689-95.			
Variable	b coefficient	SE	P value
Chr b	-161	48	<0.001
Smb of each predictor on birth weight	-113	24	< 0.001
Wei adjusting for all the other	8	1	< 0.001
Mot predictors	9	2	<0.001
Age (yrs)	1	21	0.76
Multiparous ($0=$ No, $1=$ yes)	120		<0.001
Ethnic group of origin (Ref. = Western European)			
North African	108	37	0.004
Sub-Saharan African	-140	52	0.007
Other origin	19	33	0.560
Educational level (Ref. = University)			
Primary school	-43	31	0.160
Secondary school	-65	25	0.008
Technical school	-50	33	0.130

Example: Effect of chronic hypertension on mean birth weight values (g), multiple linear regression ($n=1,938$), France, 1991-1993 Am J Epidemiol 1997;145(8):689-95.			
Variable	b coefficient	SE	P value
Chronic hypertension ($0=$ No, $1=$ yes)	-161	48	< 0.001
Smoking (0 = No, 1 = yes)	-113	24	< 0.001
Weight at initial visit (kg)	8	1	< 0.001
Mother's heiaht (cm)	9	2	< 0.001
b = 9 for mother's height	1	21	0.76
	120		< 0.001
An increase of 1 cm in mother's height	108	37	0.004
is expected to produce an average	-140	52	0.007
increase in birth weight of 9 grams	19	33	0.560
$(10 \mathrm{~cm} \rightarrow 90 \text { grams })$		31	
		25	
Not really an impressive effect!	-65	25	0.008
	-50	33	0.130

			53
Example: Effect of chronic hypertension on mean birth weight values (g), multiple linear regression ($n=1,938$), France, 1991-1993 Am J Epidemiol 1997;145(8):689-95.			
Variable	b coefficient	SE	P value
Chronic hypertension ($0=$ No, $1=$ yes) -161		48	< 0.001
$\mathbf{b}=\mathbf{- 1 6 1}$ for chronic hypertension An increase of 1 unit in chronic hypertension (from 0=No to $1=\mathrm{Yes}$) is expected to produce an average decrease in birth weight of 161 grams. i.e. Mothers with chronic hypertension have babies with lower birth weights on average; the absolute mean difference is estimated to be 161 grams ($95 \% \mathrm{Cl}: 161 \pm 1.96 \times 48 \rightarrow 67$ to 255) lower for those mothers	-113	24	< 0.001
	,	1	< 0.001
	9	2	< 0.001
	1	21	0.76
	120		<0.001
	108	37	0.004
	-140	52	0.007
	19	33	0.560
	-43	31	0.160
		25	0.008
	-50	33	0.130

Other
multiple (multivariable)
regression models

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Grimicel	
Common Regression Models	
$\begin{array}{ll} \mathrm{Y} & =\text { outcome (response) variable } \\ \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots . & =\text { explanatory predictors } \end{array}$	
Model	Equation
Linear regression	Mean of $\mathrm{Y}=\mathrm{a}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\ldots$
Logistic regression	Log(odds) of $\mathrm{Y}=\mathrm{a}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\ldots$
Poisson regression	Log(incidence rate) of $Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots$
Cox regression	Log(hazard rate) of $\mathrm{Y}=\mathrm{a}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{X}_{3}+\ldots$
All "linear" models!	

Logistic regression

\qquad Equation

Log(odds) of $Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots$
Y = outcome (response) variable, binary
$X_{1}, X_{2}, X_{3}, \ldots .=$ explanatory predictors

Slope $b_{i}=$ change in the log odds of Y per unit increase in X_{i}, adjusted for all other variables in the model.

Logistic regression
Equation
Log(odds) of $Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots$
Exponentiation of slope b_{i} :
$e^{b i}=$ change in the odds ratio of Y
per unit increase in X_{i},

						59
Impact of nosocomial infection on mortality						
Factor	No. (\%) of patients		Univariate analysis		Multivariate analysis	
	$\begin{gathered} \text { Died } \\ (n=111) \end{gathered}$	$\begin{gathered} \text { Survived } \\ (n=1,721) \end{gathered}$	OR (95\% CI)	P	aOR (95\% Cl)	P
Male sex	60 (54.1)	920 (53.5)	$1.0(0.7-1.5)$. 903	\ldots	
Ane $\begin{aligned} & \text { Age } 365 \text { years } \\ & \text { Emergency admision }\end{aligned}$	80 (72.1)	876 (50.9)	2.5 (1.6-3.8)	< 001	...	\ldots
	91 (82.0)	1,141 (66.3)	2.3 (1.4-3.8)	. 001
Emergency admissionPrimary admision diagnosissCancer						
	35 (31.5)	195 (11.3)	3.6 (2.4-5.5)	<.001		
Cancer Respiratory system disease	23 (20.7)	191 (11.1)	2.1 (1.3-3.4)	. 003	2.3 (1.3-4.2)	. 006
Genitourinary system diseaseDigestiv system disease	2 (1.8)	123 (7.1)	0.2 (0.1-1.0)	. 046	...	\ldots
	7 (6.3)	202 (11.7)	0.5 (0.2-1.1)	. 087	...	
Nonfital diseaseUltimately fatal disease	${ }^{34(30.6)}$	1,473 (86.3)	Reference		Reference	
	$\begin{aligned} & 52(46.8) \\ & 25(22.5) \end{aligned}$	$195(11.4)$ 39 (2.3)	${ }_{2}^{11.6 .6(7.3-18.3)}{ }_{27}(15.1-50.9)$	<	${ }_{8}^{4.9(2.9-8.3 .3)}$	-
Rapidly fatal disease Charlson comorbidity index			27.8(15.1-50.9)		8.7 (4 +2-17.0)	
$\begin{aligned} & 0-1 \\ & 2-4 \end{aligned}$	26 (23.4)	1,116 (64.8)	Reference		Reference	
	49 (44.1)	465 (27.0)	4.5 (2.8-7.4)	< 001	2.2 (1.3-3.9)	. 006
$5-12$Karmofky functional status index						
8-10		$999(58.3$,		Reference	
	95 (85.6)	710 m.	14.3	<. 001	3.2 (1.8-5.7)	< 001
NeutropeniaUnderwent$\mathrm{e}^{\mathrm{b}}=\mathrm{OR}$	for 2	4 comor	idities		\cdots	\cdots
	for 2	4 comor	idities		$4.2(2.3-7.5)$	$\stackrel{.10}{<.001}$
Developed $n \quad e^{\text {b }}=O R$	for 5-1	2 como	bidities	<. 001	3.6 (2.1-6.1)	<. 001
NOTE, OR a Table only i - Data missi	you i	terpret	is?	is ($P<.20$	pidemiol 2008;	9:685-692

Logistic regression
Equation
Log(odds) of $\mathbf{Y}=\mathbf{a + b _ { 1 }} \mathbf{X}_{1}+b_{2} \mathbf{X}_{2}+b_{3} \mathbf{X}_{3}+\ldots$
Intercept $a=$ value of log odds of Y value when all
\mathbf{X}_{i} are zero
(may not have any practical meaning)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Logistic regression

Equation

Log(odds) of $Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots$

If you know the odds you can calculate the probability, so this is actually a probability model.

Equation

Probability of $Y=\frac{1}{1+e^{-\left(a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\cdots\right)}}$

Poisson regression

\qquad

Equation

$\log ($ rate $)$ of $Y=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots$
$Y \quad=$ outcome (response), incidence count
$\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots .=$ explanatory predictors

Exponentiation of slope b_{i}
$e^{b i}=$ change in the incidence rate ratio of Y
per unit increase in X_{i},
adjusted for all other variables in the model

Recommended Reading:

- Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG

Prognosis and prognostic research: what, why, and how? BMJ 2009;338:b375. Available at:
\qquad

- Worster A, Fan J, Ismaila A. Understanding linear and logistic \qquad regression analyses. CJEM 2007;9(2):111-3.Available at:
\qquad
- Walters SJ. What is a Cox model? Available at
\qquad

Videos

- Regression Introduction by Marcello Pagano. Available at:

Further Reading:

- TripepiG, Jager KJ, Dekker FW Zoccali C. Linear and logistic regression analysis. Kidney International 2008;73:806-810. Available at:
\qquad
- vanDijk PC, Jager KJ, Zwinderman AH, Zoccali C, Dekker FW. The analysis of survival data in nephrology: basic concepts and methods of Cox regression. Kidney International 2008;74(6):7059. Available at:
\qquad
- Campbell MJ, Swinscow TDV. Statistics at Square One, 9th Edition, 1997: chapters 11 and 12. Available from:
\qquad
readers/publications/statistics-square-one \qquad
\qquad

