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Regression

Critical Numbers 2016, Lecture 6 

Dr Evangelos Kritsotakis
Lecturer in Epidemiology & Statistics

School of Health and Related Research (ScHARR)

e.kritsotakis@sheffield.ac.uk

� Understand the role of multivariable regression models in 

controlling confounding and prediction.

� Interpret scatterplots for continuous bivariate data in terms of 

linearity, direction and strength of an association.

� Describe what is meant by a linear relationship; understand the 

concept of the regression line and how the linear regression 
equation can be used to model it.

� Be able to correctly interpret the conceptual and practical meaning of 

model coefficients, their confidence intervals and p-values in linear, 
logistic, Poisson and Cox regression analyses.

� Interpret in context the results of multivariable regression analyses 

published in the medical literature.

Learning objectives
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Overview of 

regression models
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Essential work in clinical research pertains to three fundamental 

subtypes of medical “gnosis”:

� diagnosis – knowing if disease is present,

� aetiognosis (aetiology) – knowing what factors cause the 

disease,

� prognosis – knowing about the future course of a patient’s 

current standing, including how prospects would depend on the 

choice of intervention or treatment.

Multivariable (multiple) regression analysis is a valuable tool for 

diagnostic, prognostic and aetiognostic research problems.

Conceptual framework
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1. Develop a model for prediction of a clinical outcome

• estimate the risk of future outcomes in individuals based on different 

combinations of clinical and non-clinical characteristics,

• classify individuals as likely to experience the outcome or not,

• develop prediction rules (scoring systems) to direct further diagnostic

evaluations, treatments etc

Prediction research includes both prognostic and diagnostic 

studies. Results are widely used in clinical practice:

- Apgar score to determine the prognosis of new-borns,  

- APACHE and SAPS scores to predict hospital mortality in critically ill 

patients, 

- Prenatal testing to assess the risk that a pregnant woman will give 

birth to a baby with Down’s syndrome. BMJ 2009;338:b375

Important applications of regression (1)
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• Diagnostic gold standard is renal angiography (but invasive & costly).

• Can we develop prediction rule for RAS from clinical characteristics, 

that can be used to select patients for renal angiography?

• Logistic regression analysis was performed with data from 477 

hypertensive patients who underwent renal angiography. 

• Diagnostic accuracy of the regression model was (similar to that of 

renal scintigraphy): sensitivity = 72% & specificity = 90%.

• It can help to select patients for renal angiography in an efficient 

manner. 

Ann Intern Med 1998;129(9):705-11

Example (1): Predicting Renal Artery Stenosis
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Source: E.W. Steyerberg, Clinical Prediction Models

Example (1): Predicting Renal Artery Stenosis
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2. Isolate the effect of a single variable on a clinical 

outcome:

� Emphasis on a single effect (e.g. a treatment, an 

intervention, a risk factor).

� Need to address this in a multivariable context to control 

confounding (RCTs are not always possible):

- In a situation of confounding, the crude (unadjusted) data may give 

us the wrong picture of the effect of the study variable,

- other variables may be exaggerating the strength of the effect or 

concealing some or all of it

Important applications of regression (2)

Example (2): Impact of nosocomial infection on mortality

Infect Control Hosp Epidemiol 2008; 29:685– 692

9
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Example (2): Impact of nosocomial infection on mortality

Infect Control Hosp Epidemiol 2008; 29:685– 692

Univariate analysis does 
not account for joint 

effects (looks at one 

variable at a time).
The OR reported is called 

crude or unadjusted The crude OR for death is 8.4
(95%CI: 5.4 – 13.2)

Nosocomial infection is associated 
with a 7.4-fold increase (by 740%) 

in the odds of death. 

But confounding ?

You know how to 

calculate the crude OR !
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Example (2): Impact of nosocomial infection on mortality

Infect Control Hosp Epidemiol 2008; 29:685– 692

Other variables 
significantly 
affect mortality, 
such as age and 
several baseline 
factors related 
to the pre-
existing 
conditions

Notice how imbalanced the 
distributions are in the two groups !
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Example (2): Impact of nosocomial infection on mortality

Infect Control Hosp Epidemiol 2008; 29:685– 692

Multivariate analysis does allow 
for joint effects.

The OR reported is called 

adjusted

The adjusted OR for death is 3.6
(95%CI: 2.1 – 6.1)

Nosocomial infection is associated 
with a 2.6-fold increase (by 260%) in 
the odds of death, accounting for 

confounding effects by other 
variables, such as age and severity 

of pre-existing conditions.

You need logistic regression  
to calculate the adjusted OR !

12
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• Crude (or unadjusted): does not take into account the effect of 

confounding variables

• Adjusted: accounts for the confounding variable(s)

Generated using multivariate regression analysis 

• Confounding is likely when:

ORcrude ≠  ORadjusted (logistic regression)

MDcrude ≠  MDadjusted (linear regression)

IRRcrude ≠  IRRadjusted (Poisson regression)

HRcrude ≠  HRadjusted (Cox regression)

Crude vs. Adjusted Effects
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The adjusted OR is 3.6
(95%CI: 2.1 – 6.1)

This is an independent or direct effect 
over and above the effects of the other variables.

It was calculated after accounting (adjusting, correcting, 

controlling, allowing) for the effects of other variables in the 
regression model.

There may still be residual confounding if we missed important 
“third” variables in the model 

(don’t need to worry about this in RCTs)

Adjusted effects: terminology
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3. Identify multiple independent predictors of a clinical 

outcome and understand how they jointly affect the 

outcome 

� “independent” in the sense they that have an effect over  

and above other measured variables.

� need to consider other complexities of how predictors 

jointly influence the outcome:

- confounding

- effect modification (interaction)

- mediation (“intermediate” variables)

Important applications of regression (3)

15
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4. Covariate adjustment to improve efficiency in RCTs

� The strength of randomization is that comparability is created 

between the treated groups.

� No systematic confounding can hence occur in RCTs, but random 

imbalance might occur!

� Some measured baseline variables may be strongly predictive of 

outcome.

Regression analysis is used to correct for such random 

imbalances.

Important applications of regression (4)
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Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium
falciparum infection in semi-immune adult men in The Gambia:
a randomised trial. Lancet 2001; 358: 1927–34

Example (4): Malaria vaccine trial

Baseline Variables Vaccine Control

Bednet use, n(%) 19 (16%) 10 (9%)

Antibody level, n(%) Low 48 (38%) 32 (28%)

Med 38 (30%) 43 (37%)

High 41 (32%) 40 (35%)

Village, n(%) BK 40 (31%) 37 (31%)

BS 15 (11%) 13 (11%)

HK 12 (9%) 12 (10%)

KU 12 (9%) 13 (11%)

SA 28 (21%) 24 (20%)

TT 24 (18%) 20 (17%)

Age, median (IQR) 25 (20-35) 25 (19-38)

Well balanced 
distributions 
of baseline 
variables.

No 
confounding 
issues (as 
expected!)

17

Efficacy of RTS,S/AS02 malaria vaccine Lancet 2001; 358: 1927–34

Cox regression

Example (4): Malaria vaccine trial

18
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Efficacy of RTS,S/AS02 malaria vaccine Lancet 2001; 358: 1927–34

Cox regression

Example (4): Malaria vaccine trial

In univariate (crude) 
analysis HR = 1.30 

(risk of malaria is 

increased by 30% in the 
non-vaccinated group in 

our sample.

But the confidence 
interval includes the null 

value of 1,

so this effect is not
statistically significant
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Efficacy of RTS,S/AS02 malaria vaccine Lancet 2001; 358: 1927–34

Cox regression

Example (4): Malaria vaccine trial

In crude analysis 
baseline variables 
are predictive of 

malaria risk! 

(e.g. increasing 
age and antibody 

levels have 
protective effects)

Should adjusted 
for these! 

20

Efficacy of RTS,S/AS02 malaria vaccine Lancet 2001; 358: 1927–34

Cox regression

Example (4): Malaria vaccine trial

After adjustment, 
adj. HR = 1.51 

(hazard of malaria is 

increased by 51% in the 
non-vaccinated group in 

our sample.

And this is
statistically 

significant

21
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Examples recap

Example Clinical 
objective

Statistical 
objective

Regression 
type

Renal Artery Stenosis Diagnosis Prediction Logistic

Nosocomial Infections Prognosis Isolate effect Logistic

Malaria vaccine trial Prognosis 
(treatment 

prospect)

Covariate 
adjustment

Cox

22

• Regression relates two kinds of variables:

• Outcome (or response or dependent) variable: for example

– Blood pressure

– 90 day mortality

– Number of CHD admissions

– Time to infection

• Explanatory variables (or predictors or independent): e.g.

– age

– sex

– severity of illness

– comorbid conditions

– treatment type

Responses & predictors

23

Common Regression Models

Model Outcome What is 
modelled?

Measure of
effect

Linear
regression

Continuous Mean Mean difference
(MD)

Logistic 
regression

Binary Log(odds) Odds ratio (OR)

Poisson
regression

Binary 
(count data)

Log(incidence 
rate)

Incidence rate 
ratio (IRR)

Cox 
regression

Time to event 
(survival time)

Log(hazard rate) Hazard ratio 
(HR)

24
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Simple linear regression
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– Y = continuous outcome.

– X = explanatory variable (any type)

– “Simple”: only one X variable.

– Aim: Model the dependency of Y on X.

– How does the mean of Y change with X?

– E.g. How does FEV (=Y) depend on age (=X) in children and 

adolescents?

- Is there a “linear relationship”? If so,

- How much increase in FEV do we see, on average, for an increase in 

age by 1 year?

- What average FEV would we expect for a given age?

Simple linear regression

26

Scatterplot: 

visualizing the relationship between two numerical variables

FEV tends to increase with age, on average.
Points seem to follow a straight line with a positive slope.

There is a positive linear relationship (correlation). 

27
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Scatterplot: 

visualizing the relationship between two numerical variables

FEV tends to increase with age, on average.
Points seem to follow a straight line with a positive slope.

There is a positive linear relationship (correlation). 

28

1
9
.0
0

1
8
.0
0

1
7
.0
0

1
6
.0
0

1
5
.0
0

1
4
.0
0

1
3
.0
0

1
2
.0
0

1
1
.0
0

1
0
.0
0

9
.0
0

8
.0
0

7
.0
0

6
.0
0

5
.0
0

4
.0
0

3
.0
0

fe
v

Scatterplots

A perfect positive linear 
correlation

Y = a + b X

b > 0

We never see these in real life (variation!)
But we do see linear patterns, linear on average.

Y

X

A perfect negative linear 
correlation

Y = a + b X

b < 0 

Y

X

29

Scatterplots

Y

X
A real-life positive linear 

correlation

Mean of Y = a + b X

b > 0

Y

X
A real-life negative linear 

correlation

Mean of Y = a + b X

b < 0 

Linear patterns, on average.

30
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Scatterplots

A perfect no relationship

Y = a 

b = 0

Y

X

A real-life no relationship

Mean Y = a 

b = 0

The slope coefficient b tells us if there is a correlation.

31

Scatterplots

Linear regression cannot handle this directly

A non-linear relationship

Cannot be modelled using a straight line equation

32

� Data for 654 children and adolescents:

� FEV tends to increase with age, on average: how can we quantify this 

effect?

Simple linear regression example 

fe
v
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Linear regression: age and FEV in children

fe
v

Regression line equation:

Mean FEV = a + b ▪AGE

Estimated b = 0.22 
(sample estimate)

(95%CI: 0.21 to 0.24; p< 0.001)

The confidence interval excludes 0, 
so there is a statistically significant linear association.

Linear regression: age and FEV in children

fe
v

Regression line equation:

Mean FEV = a + b ▪AGE

Estimated b = 0.22 
(sample estimate)

(95%CI: 0.21 to 0.24; p< 0.001)

The slope coefficient b = 0.22 quantifies the association:

For each unit increase Age (an increase of 1 year), 

we expect an increase of 0.22 litres in FEV, on average. 

Linear regression: age and FEV in children

fe
v

Regression line equation:

Mean FEV = 0.43 + 0.22 AGE

According to this model, 
15-year old children are expected to have an average FEV of 3.73 litres  

(0.43 + 0.22 x 15).
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Linear regression: age and FEV in children

fe
v

Regression line equation:

Mean FEV = 0.43 + 0.22 AGE

According to this model, 
Babies (age = 0 yrs) are expected to have an average FEV = 0.43 litres  

(but we should not use this!).

The regression line (the linear regression model)

The regression line can be represented numerically by an 

equation, which includes two coefficients: 

� the intercept a (the mean value of the outcome, when the 

predictor variable is equal to zero) 

� and the slope b (the average change in the outcome for a 
unit change in the x variable): 

Intercept Slope

Outcome variable Predictor variable

Mean y = a + b x

38

b � average change in y for a unit change in x

Equation of the line: meanY = a + bX

Y
 R

e
s
p

o
n

s
e
 v

a
ri

a
b
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u
tc

o
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e
)

X Predictor / explanatory variable

0

a is the intercept – mean value of Y when X is zero

b is the slope or gradient of the line
The amount of change in mean Y

for a one unit change in X

∆y

∆x

b = ∆y / ∆x

39
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Mathematical estimation of the best fitting line

• The standard way to do this is using a method called least 
squares using a computer.

• The method chooses a line so that the square of the vertical 
distances between the line and the point (averaged over all 

points) is minimised.

Y
 R

e
s
p

o
n

s
e
 v

a
ri

a
b

le

X Predictor / explanatory variable

40

� Quantify a linear association

e.g. how much increase in FEV we see on average for a year 

increase in age

� Predict

e.g. what average level of FEV would we expect for a given 

age, and

how precise our estimate is for a given age

� Adjust

e.g. what the association between FEV and Age is,

adjusting for the effect other factors 

such as gender, height and smoking.

Uses of linear regression

41

Multiple linear regression

42
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� Simple linear regression model:

mean Y = a + b X

extents to:

�Multiple (multivariable) linear regression model:

mean Y = a + b1X1 + b2X2 + b3X3 + …

Slope coefficients bi show the strength and direction 

of association of Y with each of the Xi’s.

Regression analysis produces confidence intervals for bi’s and 

p-values to test the null effect hypotheses H0: bi = 0

Multiple linear regression model

43

� Multiple (multivariate) linear regression model:

mean Y = a + b1X1 + b2X2 + b3X3 + …

Slope coefficients bi quantify the association between Y and 

each of the Xi’s:

Interpretation of slope coefficients

Slope bi = average change (mean difference) in Y 

per unit increase in Xi,

adjusted for all other variables in the model

Intercept a = mean Y value when all Xi are zero

(usually of no practical meaning) 

44

Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938 pregnant women), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

45
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Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

Chronic hypertension is of principal 
focus, but other variables are included 
since the authors believed that they 
needed to be adjusted for.

46

Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

p –values tell us which predictors 
have no statistically significant effect 
on birth weight (p > 0.05).

47

Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

Standard errors can be used to 
calculate confidence interval for 

the b coefficients:

b ± 1.96 SE

48
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Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

Note the 0 – 1 coding for 
binary variables.
0 is assigned to the reference 
(control) category 

The reference category is 
explicitly defined for 
categorical predictors.
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Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

Continuous predictors do not 
have a reference category.

50

Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

b coefficients quantify the effect 
of each predictor on birth weight,

adjusting for all the other 

predictors

51
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Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

b = 9 for mother’s height

An increase of 1 cm  in mother’s 

height
is expected to produce an average 

increase in birth weight of 9 grams 

(10cm � 90 grams)

Not really an impressive effect!

52

Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

b = -161 for chronic hypertension

An increase of 1 unit in chronic 

hypertension (from 0=No to 1=Yes)

is expected to produce an average 
decrease in birth weight of 161 grams.

i.e.

Mothers with chronic hypertension have 
babies with lower birth weights on 

average; 

the absolute mean difference is 
estimated to be 161 grams 

(95%CI: 161±1.96x48 � 67 to 255) 

lower for those mothers

53

Example: Effect of chronic hypertension on mean birth weight values (g), 
multiple linear regression (n = 1,938), France, 1991-1993

Am J Epidemiol 1997;145(8):689-95.

Variable b coefficient SE P value

Chronic hypertension (0 = No, 1 = yes) -161 48 < 0.001

Smoking (0 = No, 1 = yes) -113 24 < 0.001

Weight at initial visit (kg) 8 1 < 0.001

Mother’s height (cm) 9 2 < 0.001

Age (yrs) 1 21 0.76

Multiparous (0 = No, 1 = yes) 120 < 0.001

Ethnic group of origin  (Ref. = Western European)

North African 108 37 0.004

Sub-Saharan African -140 52 0.007

Other origin 19 33 0.560

Educational level (Ref. = University)

Primary school -43 31 0.160

Secondary school -65 25 0.008

Technical school -50 33 0.130

b = -140

How would you interpret this?

54



19

Other 
multiple (multivariable) 

regression models

55

Common Regression Models

Model Equation

Linear

regression

Mean of Y = a + b1X1 + b2X2 + b3X3 + …

Logistic 

regression

Log(odds) of Y = a + b1X1 + b2X2 + b3X3 + …

Poisson

regression

Log(incidence rate) of Y = a + b1X1 + b2X2 + b3X3 + …

Cox 

regression

Log(hazard rate) of Y = a + b1X1 + b2X2 + b3X3 + …

Y = outcome (response) variable
X1, X2, X3, …. = explanatory predictors

All “linear” models!

56

Logistic regression

Equation

Log(odds) of Y = a + b1X1 + b2X2 + b3X3 + …

Y = outcome (response) variable, binary
X1, X2, X3, …. = explanatory predictors

Slope bi = change in the log odds of Y 

per unit increase in Xi,

adjusted for all other variables in the model.

57
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Logistic regression

Equation

Log(odds) of Y = a + b1X1 + b2X2 + b3X3 + …

Exponentiation of slope bi:

ebi = change in the odds ratio of Y 

per unit increase in Xi,

adjusted for all other variables in the model

58

Impact of nosocomial infection on mortality

Infect Control Hosp Epidemiol 2008; 29:685– 692

59

eb = OR = 2.2  for  2-4 comorbidities
eb = OR = 2.9  for  5-12 comorbidities

How would you interpret this?

Impact of nosocomial infection on mortality

Infect Control Hosp Epidemiol 2008; 29:685– 692

The adjusted OR for death is 3.6
(95%CI: 2.1 – 6.1)

Nosocomial infection is associated 
with a 2.6-fold increase (by 260%) in 
the odds of death, accounting for 

confounding effects by other 
variables, such as age and severity 

of pre-existing conditions.
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Logistic regression

Equation

Log(odds) of Y = a + b1X1 + b2X2 + b3X3 + …

Intercept a = value of log odds of Y value when all 

Xi are zero

(may not have any practical meaning) 
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Logistic regression

Equation

Log(odds) of Y = a + b1X1 + b2X2 + b3X3 + …

If you know the odds you can calculate the 

probability, so this is actually a probability model.

Equation

( )1 1 2 2 3 3a b X b X b X

1
Probability of Y 

1 e
− + + + +

=
+

�
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Cox regression

Equation

Log(hazard) of Y = a + b1X1 + b2X2 + b3X3 + …

Y = outcome (response) variable, time to event
X1, X2, X3, …. = explanatory predictors

Exponentiation of slope bi 

ebi = change in the hazard ratio of Y 

per unit increase in Xi,

adjusted for all other variables in the model
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Efficacy of RTS,S/AS02 malaria vaccine Lancet 2001; 358: 1927–34

Cox regression

Example: Malaria vaccine trial

64

eb = HR = 0.59 for  1.0 - 2.7 mg/L
eb = HR = 0.51 for  2.7- 42.0 mg/L

How would you interpret this?

Efficacy of RTS,S/AS02 malaria vaccine Lancet 2001; 358: 1927–34

Cox regression

Example (4): Malaria vaccine trial

After adjustment, 
adj. HR = 1.51 

(hazard of malaria is 

increased by 51% in the 
non-vaccinated group in 

our sample.

What does the 
confidence 

interval show?
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Poisson regression

Equation

Log(rate) of Y = a + b1X1 + b2X2 + b3X3 + …

Y = outcome (response), incidence count
X1, X2, X3, …. = explanatory predictors

Exponentiation of slope bi 

ebi = change in the incidence rate ratio of Y 

per unit increase in Xi,

adjusted for all other variables in the model
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