

#### **Gritical Nombers**

# 2

# Learning objectives

- Understand the role of multivariable regression models in controlling confounding and prediction.
- Interpret scatterplots for continuous bivariate data in terms of linearity, direction and strength of an association.
- Describe what is meant by a linear relationship; understand the concept of the regression line and how the linear regression equation can be used to model it.
- Be able to correctly interpret the conceptual and practical meaning of model coefficients, their confidence intervals and p-values in linear, logistic, Poisson and Cox regression analyses.
- Interpret in context the results of multivariable regression analyses published in the medical literature.



#### **Critical Number**

# **Conceptual framework**

4

5

Essential work in clinical research pertains to three fundamental subtypes of medical "gnosis":

- > diagnosis knowing if disease is present,
- aetiognosis (aetiology) knowing what factors cause the disease,
- prognosis knowing about the future course of a patient's current standing, including how prospects would depend on the choice of intervention or treatment.

Multivariable (multiple) **regression analysis** is a valuable tool for diagnostic, prognostic and aetiognostic research problems.

#### **Critical Number**

#### Important applications of regression (1)

# Develop a model for prediction of a clinical outcome estimate the risk of future outcomes in individuals based on different combinations of clinical and non-clinical characteristics,

- classify individuals as likely to experience the outcome or not.
- develop prediction rules (scoring systems) to direct further diagnostic evaluations, treatments etc

Prediction research includes both **prognostic and diagnostic** studies. Results are **widely used in clinical practice**:

- Apgar score to determine the prognosis of new-borns,
- APACHE and SAPS scores to predict hospital mortality in critically ill patients,
- Prenatal testing to assess the risk that a pregnant woman will give birth to a baby with Down's syndrome. BMJ 2009;338:b375

#### Gritical Nombers

#### Example (1): Predicting Renal Artery Stenosis

- Diagnostic gold standard is renal angiography (but invasive & costly).
- Can we develop prediction rule for RAS from clinical characteristics, that can be used to select patients for renal angiography?
- Logistic regression analysis was performed with data from 477 hypertensive patients who underwent renal angiography.
- Diagnostic accuracy of the regression model was (similar to that of renal scintigraphy): sensitivity = 72% & specificity = 90%.
- It can help to select patients for renal angiography in an efficient manner.

Ann Intern Med 1998;129(9):705-11



# **Gritical Nomber**

# Important applications of regression (2)

- 2. Isolate the effect of a single variable on a clinical outcome:
  - Emphasis on a single effect (e.g. a treatment, an intervention, a risk factor).
  - Need to address this in a multivariable context to control confounding (RCTs are not always possible):
  - In a situation of confounding, the crude (unadjusted) data may give us the wrong picture of the effect of the study variable,
  - other variables may be exaggerating the strength of the effect or concealing some or all of it

|                                                | No. (%) of patients |              |                  |       |                |         |
|------------------------------------------------|---------------------|--------------|------------------|-------|----------------|---------|
|                                                | Died                | Survived     | Univariate ana   | dysis | Multivariate a | nalysis |
| Factor                                         | (n = 111)           | (n = 1,721)  | OR (95% CI)      | P     | aOR (95% CI)   | P       |
| Male sex                                       | 60 (54.1)           | 920 (53.5)   | 1.0(0.7-1.5)     | .903  |                |         |
| Age ≥65 years                                  | 80 (72.1)           | 876 (50.9)   | 2.5 (1.6-3.8)    | <.001 |                |         |
| Emergency admission                            | 91 (82.0)           | 1,141 (66.3) | 2.3 (1.4-3.8)    | .001  |                |         |
| Primary admission diagnosis <sup>a</sup>       |                     |              |                  |       |                |         |
| Cancer                                         | 35 (31.5)           | 195 (11.3)   | 3.6 (2.4-5.5)    | <.001 |                |         |
| Respiratory system disease                     | 23 (20.7)           | 191 (11.1)   | 2.1 (1.3-3.4)    | .003  | 2.3 (1.3-4.2)  | .006    |
| Genitourinary system disease                   | 2 (1.8)             | 123 (7.1)    | 0.2(0.1-1.0)     | .046  |                |         |
| Digestive system disease                       | 7 (6.3)             | 202 (11.7)   | 0.5(0.2-1.1)     | .087  |                |         |
| McCabe-Jackson classification <sup>b</sup>     |                     |              |                  |       |                |         |
| Nonfatal disease                               | 34 (30.6)           | 1,473 (86.3) | Reference        |       | Reference      |         |
| Ultimately fatal disease                       | 52 (46.8)           | 195 (11.4)   | 11.6 (7.3-18.3)  | <.001 | 4.9 (2.9-8.3)  | <.001   |
| Rapidly fatal disease                          | 25 (22.5)           | 39 (2.3)     | 27.8 (15.1-50.9) | <.001 | 8.7 (4.3-17.6) | <.001   |
| Charlson comorbidity index                     |                     |              |                  |       |                |         |
| 0-1                                            | 26 (23.4)           | 1,116 (64.8) | Reference        |       | Reference      |         |
| 2-4                                            | 49 (44.1)           | 465 (27.0)   | 4.5 (2.8-7.4)    | <.001 | 2.2 (1.3-3.9)  | .006    |
| 5-12                                           | 36 (32.4)           | 140(8.1)     | 11.0 (6.5-18.8)  | <.001 | 2.9 (1.5-5.6)  | .001    |
| Karnofsky functional status index <sup>e</sup> |                     |              |                  |       |                |         |
| 8-10                                           | 16 (14.4)           | 999 (58.5)   | Reference        |       | Reference      |         |
| 0-7                                            | 95 (85.6)           | 710 (41.5)   | 8.4 (4.9-14.3)   | <.001 | 3.2 (1.8-5.7)  | <.001   |
| Neutropenia                                    | 6 (5.4)             | 24 (1.4)     | 4.0 (1.6-10.1)   | .003  |                |         |
| Underwent previous surgical procedured         | 18 (16.2)           | 561 (32.6)   | 0.4 (0.2-0.7)    | <.001 |                |         |
| Exposed to ≥3 invasive devices                 | 31 (27.9)           | 54 (3.1)     | 10.6 (6.2-18.0)  | <.001 | 4.2 (2.3-7.5)  | <.001   |
| Developed nosocomial infection                 | 36 (32.4)           | 93 (5.4)     | 8.4 (5.4-13.2)   | <.001 | 3.6 (2.1-6.1)  | <.001   |







|                                                | No. (%)   | of patients  |                  |       |                       | -    |
|------------------------------------------------|-----------|--------------|------------------|-------|-----------------------|------|
|                                                | Died      | Survived     | Univariate ana   | dysis | Multivariate analysis | _    |
| Factor                                         | (n = 111) | (n = 1,721)  | OR (95% CI)      | P     | aOR (95% CI) P        |      |
| Male sex                                       | 60 (54.1) | 920 (53.5)   | 1.0 (0.7-1.5)    | .903  |                       |      |
| Age ≥65 years                                  | 80 (72.1) | 876 (50.9)   | 2.5 (1.6-3.8)    | <.001 |                       |      |
| Emergency admission                            | 91 (82.0) | 1,141 (66.3) | 2.3 (1.4-3.8)    | .001  |                       |      |
| Primary admission diagnosis <sup>a</sup>       |           |              |                  |       |                       |      |
| Cancer                                         | 35 (31.5) | 195 (11.3)   | 3.6 (2.4-5.5)    | <.001 |                       |      |
| Respiratory system disease                     | 23 (20.7) | 191 (11.1)   | 2.1 (1.3-3.4)    | .003  | 2.3 (1.3-4.2) .006    | 5    |
| Genitourinary system disease                   | 2 (1.8)   | 123 (7.1)    | 0.2 (0.1-1.0)    | .046  | Otherwariel           | h.L. |
| Digestive system disease                       | 7 (6.3)   | 202 (11.7)   | 0.5 (0.2-1.1)    | .087  | Other variat          | DIE  |
| McCabe-Jackson classification <sup>b</sup>     |           |              |                  |       | significantly         | 6    |
| Nonfatal disease                               | 34 (30.6) | 1,473 (86.3) | Reference        |       |                       |      |
| Ultimately fatal disease                       | 52 (46.8) | 195 (11.4)   | 11.6 (7.3-18.3)  | <.001 | anect morta           | IIIT |
| Rapidly fatal disease                          | 25 (22.5) | 39 (2.3)     | 27.8 (15.1-50.9) | <.001 | A such as age         | a a  |
| Charlson comorbidity index                     |           |              |                  |       | ouon uo uge           | 1    |
| 0-1                                            | 26 (23.4) | 1,116 (64.8) | Reference        |       | 🔋 several bas         | e    |
| 2-4                                            | 49 (44.1) | 465 (27.0)   | 4.5 (2.8-7.4)    | <.001 | 2.2 factors relat     | tor  |
| 5-12                                           | 36 (32.4) | 140 (8.1)    | 11.0 (6.5-18.8)  | <.001 | 2.9                   | .00  |
| Karnofsky functional status index <sup>c</sup> |           |              |                  |       | to the pre-           |      |
| 8-10                                           | 16 (14.4) | 999 (58.5)   | Reference        |       | F ovicting            |      |
| 0-7                                            | 95 (85.6) | 710 (41.5)   | 8.4 (4.9-14.3)   | <.001 | 3.2                   |      |
| Neutropenia                                    | 6 (5.4)   | 24 (1.4)     | 4.0 (1.6-10.1)   | .003  | conditions            |      |
| Underwent previous surgical procedured         | 18 (16.2) | 561 (32.6)   | 0.4 (0.2-0.7)    | <.001 |                       |      |
| Exposed to ≥3 invasive devices                 | 31 (27.9) | 54 (3.1)     | 10.6 (6.2-18.0)  | <.001 | 4.2 (2.3-7.5) <.001   |      |
| Developed nosocomial infection                 | 36 (32.4) | 93 (5.4)     | 84(54-132)       | < 001 | 3.6(2.1-6.1) < 0.01   | i i  |





| Critical Numbers                                                                                                            | 13       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| Crude vs. Adjusted Effects                                                                                                  |          |  |  |  |  |
| <ul> <li>Crude (or unadjusted): does not take into account the e confounding variables</li> </ul>                           | ffect of |  |  |  |  |
| <ul> <li>Adjusted: accounts for the confounding variable(s)<br/>Generated using multivariate regression analysis</li> </ul> |          |  |  |  |  |
| Confounding is likely when:                                                                                                 |          |  |  |  |  |
| OR <sub>crude</sub> ≠ OR <sub>adjusted</sub> (logistic regression                                                           | on)      |  |  |  |  |
| MD <sub>crude</sub> ≠ MD <sub>adjusted</sub> (linear regression                                                             | 1)       |  |  |  |  |
| IRR <sub>crude</sub> ≠ IRR <sub>adjusted</sub> (Poisson regres                                                              | sion)    |  |  |  |  |
| HR <sub>crude</sub> ≠ HR <sub>adjusted</sub> (Cox regression)                                                               |          |  |  |  |  |
|                                                                                                                             |          |  |  |  |  |
|                                                                                                                             |          |  |  |  |  |

#### Critical Numbers

# Adjusted effects: terminology

14

15

The **adjusted OR** is **3.6** (95%CI: 2.1 – 6.1)

This is an **independent** or **direct effect** over and above the effects of the other variables.

It was calculated after accounting (adjusting, correcting, controlling, allowing) for the effects of other variables in the regression model.

There may still be **residual confounding** if we missed important "third" variables in the model (don't need to worry about this in RCTs)

# Important applications of regression (3)

3. Identify multiple independent predictors of a clinical outcome and understand how they jointly affect the outcome

- "independent" in the sense they that have an effect over and above other measured variables.
- need to consider other complexities of how predictors jointly influence the outcome:
  - confounding
  - effect modification (interaction)
  - mediation ("intermediate" variables)

#### Critical Nombers

# Important applications of regression (4)

16

17

#### 4. Covariate adjustment to improve efficiency in RCTs

- The strength of randomization is that comparability is created between the treated groups.
- No systematic confounding can hence occur in RCTs, but random imbalance might occur!
- Some measured baseline variables may be strongly predictive of outcome.

Regression analysis is used to correct for such random imbalances.

#### Critical Na

# Example (4): Malaria vaccine trial

Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial.

|                           |      |    |         |     |         | $(\gamma \gamma)$       |
|---------------------------|------|----|---------|-----|---------|-------------------------|
| <b>Baseline Variables</b> |      | Va | accine  | Con | trol    |                         |
| Bednet use, n(%)          |      | 19 | (16%)   | 10  | (9%)    | distributions           |
| Antibody level, n(%)      | Low  | 48 | (38%)   | 32  | (28%)   | of baseline             |
|                           | Med  | 38 | (30%)   | 43  | (37%)   | variables.              |
|                           | High | 41 | (32%)   | 40  | (35%)   | No                      |
| Village, n(%)             | BK   | 40 | (31%)   | 37  | (31%)   | confounding             |
|                           | BS   | 15 | (11%)   | 13  | (11%)   | issues (as              |
|                           | ΗK   | 12 | (9%)    | 12  | (10%)   | <pre> expected!) </pre> |
|                           | KU   | 12 | (9%)    | 13  | (11%)   | $\mathcal{A}$           |
|                           | SA   | 28 | (21%)   | 24  | (20%)   | $\smile$                |
|                           | TT   | 24 | (18%)   | 20  | (17%)   |                         |
| Age, median (IQR)         |      | 25 | (20-35) | 25  | (19-38) |                         |

|                 |                                                                                           |                                                                                        |                                                                                                       |                                                                                                       | 18  |
|-----------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|
|                 | Exam                                                                                      | ple (4)                                                                                | : Malaria                                                                                             | a vaccine trial                                                                                       |     |
| Efficacy of RTS | ,S/AS02 r                                                                                 | nalaria vac                                                                            | cine                                                                                                  | Lancet 2001; 358: 1927-                                                                               | -34 |
| Cox regression  |                                                                                           | Number<br>developing para-<br>sitaemia/total                                           | Crude hazard<br>ratio (95% CI)*                                                                       | Adjusted hazard<br>ratio (95% CI)†                                                                    |     |
|                 | Group<br>RTS,S/AS02<br>Control                                                            | 81/131 (62%)<br>80/119 (67%)                                                           | 1<br>1·30 (0·95–1·77)‡                                                                                | 1<br>1·51 (1·09–2·11)                                                                                 |     |
|                 | Village<br>Bakadagi<br>Bassending<br>Hela Kunda<br>Kulukuley<br>Sanunding<br>Touba Tafsir | 42/77 (55%)<br>15/28 (54%)<br>17/24 (71%)<br>23/25 (92%)<br>34/52 (65%)<br>30/44 (68%) | 1<br>1·47 (0·81-2·65)<br>1·45 (0·82-2·54)<br>2·61 (1·57-4·35)<br>1·64 (1·04-2·57)<br>1·75 (1·10-2·80) | 1<br>1.25 (0-69-2-27)<br>1.60 (0-90-2-84)<br>2-47 (1-44-4-23)<br>2-24 (1-38-3-63)<br>1.87 (1-15-3-06) |     |
|                 | Bednet use<br>No<br>Yes                                                                   | 141/206 (68%)<br>17/29 (59%)                                                           | 1<br>0·75 (0·45–1·24)                                                                                 | 1<br>0.93 (0.54–1.58)                                                                                 |     |
|                 | Age at enrolme<br>18–19<br>20–24<br>25–26<br>37–45                                        | ent (years)<br>44/60 (73%)<br>42/61 (69%)<br>44/66 (67%)<br>31/63 (49%)                | 1<br>0.67 (0.44–1.02)<br>0.60 (0.40–0.92)<br>0.34 (0.21–0.54)                                         | 1<br>0-67 (0-43-1-05)<br>0-70 (0-44-1-11)<br>0-36 (0-21-0-60)                                         |     |
|                 | Concentration<br><1 mg/L<br>1·0-2·7 mg/L<br>2·7-42·0 mg/L                                 | of antibody agains<br>60/80 (75%)<br>52/81 (64%)<br>43/81 (53%)                        | t CSP at enrolment<br>1<br>0.68 (0.45-1.01)<br>0.50 (0.35-0.72)                                       | 1<br>0·59 (0·38-0·92)<br>0·51 (0·34-0·76)                                                             |     |















| E                     | Example                              | es recap                |                    |  |  |  |  |  |  |
|-----------------------|--------------------------------------|-------------------------|--------------------|--|--|--|--|--|--|
|                       |                                      |                         | Examples recap     |  |  |  |  |  |  |
| Example               | Clinical<br>objective                | Statistical objective   | Regression<br>type |  |  |  |  |  |  |
| Renal Artery Stenosis | Diagnosis                            | Prediction              | Logistic           |  |  |  |  |  |  |
| Nosocomial Infections | Prognosis                            | Isolate effect          | Logistic           |  |  |  |  |  |  |
| Malaria vaccine trial | Prognosis<br>(treatment<br>prospect) | Covariate<br>adjustment | Cox                |  |  |  |  |  |  |



#### Critical Numbe

# **Responses & predictors**

23

- · Regression relates two kinds of variables:
- Outcome (or response or dependent) variable: for example Blood pressure
  90 day mortality
  Number of CHD admissions

  - Time to infection
- Explanatory variables (or predictors or independent): e.g.
  - age
  - sex

  - severity of illnesscomorbid conditions
  - treatment type

| Critical N               | lombers                       |                     | 24                            |  |  |  |  |
|--------------------------|-------------------------------|---------------------|-------------------------------|--|--|--|--|
| Common Regression Models |                               |                     |                               |  |  |  |  |
| Model                    | Outcome                       | What is modelled?   | Measure of<br>effect          |  |  |  |  |
| Linear regression        | Continuous                    | Mean                | Mean difference<br>(MD)       |  |  |  |  |
| Logistic<br>regression   | Binary                        | Log(odds)           | Odds ratio (OR)               |  |  |  |  |
| Poisson<br>regression    | Binary<br>(count data)        | Log(incidence rate) | Incidence rate<br>ratio (IRR) |  |  |  |  |
| Cox<br>regression        | Time to event (survival time) | Log(hazard rate)    | Hazard ratio<br>(HR)          |  |  |  |  |
|                          |                               |                     |                               |  |  |  |  |



**Critical Nombers** 

# Simple linear regression

#### **Gritical Nombers**

# 26

25

#### - Y = continuous outcome.

- X = explanatory variable (any type)
- "Simple": only one X variable.
- Aim: Model the dependency of Y on X.
- How does the mean of Y change with X?
- E.g. How does FEV (=Y) depend on age (=X) in children and adolescents?

Simple linear regression

- Is there a "linear relationship"? If so,
- How much increase in FEV do we see, on average, for an increase in age by 1 year?
- What average FEV would we expect for a given age?











































# Critical Nombers38The regression line (the linear regression model)The regression line can be represented numerically by an<br/>equation, which includes two coefficients: $\diamond$ the *intercept a* (the mean value of the outcome, when the<br/>predictor variable is equal to zero) $\diamond$ and the *slope b* (the average change in the outcome for a<br/>unit change in the x variable):Outcome variable<br/>Mean y = a + b x<br/>InterceptSlope<br/>b $\rightarrow$ average change in y for a unit change in x







#### Grialdi Nompers

# Mathematical estimation of the best fitting line

- The standard way to do this is using a method called **least** squares using a computer.
- The method chooses a line so that the square of the vertical distances between the line and the point (averaged over all points) is minimised.



40

41

42

#### **Gritical Nomb**

# Uses of linear regression

#### > Quantify a linear association

e.g. how much increase in FEV we see on average for a year increase in age

#### Predict

- e.g. what average level of FEV would we expect for a given age, and
- how precise our estimate is for a given age

#### > Adjust

e.g. what the association between FEV and Age is, adjusting for the effect other factors such as gender, height and smoking.

# Multiple linear regression

# Multiple linear regression model

43

44

Simple linear regression model: mean Y = a + b X

extents to:

> Multiple (multivariable) linear regression model: mean  $Y = a + b_1X_1 + b_2X_2 + b_3X_3 + ...$ 

Slope coefficients b<sub>i</sub> show the strength and direction of association of Y with each of the X<sub>i</sub>'s.

Regression analysis produces confidence intervals for  $b_i$ 's and p-values to test the null effect hypotheses  $H_0$ :  $b_i = 0$ 

# Interpretation of slope coefficients

Multiple (multivariate) linear regression model: mean  $Y = a + b_1X_1 + b_2X_2 + b_3X_3 + ...$ 

Slope coefficients  $b_i$  quantify the association between Y and each of the  $X_i$ 's:

Slope b<sub>i</sub> = average change (mean difference) in Y per unit increase in X<sub>i,</sub> adjusted for all other variables in the model

Intercept a = mean Y value when all X<sub>i</sub> are zero (usually of no practical meaning)

| Gritical Numbers                                                                                                                                                                           |               |    | 45      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|---------|--|--|--|
| Example: Effect of chronic hypertension on mean birth weight values (g),<br>multiple linear regression (n = 1,938 pregnant women), France, 1991-1993<br>Am J Epidemiol 1997;145(8):689-95. |               |    |         |  |  |  |
| Variable                                                                                                                                                                                   | b coefficient | SE | P value |  |  |  |
| Chronic hypertension (0 = No, 1 = yes)                                                                                                                                                     | -161          | 48 | < 0.001 |  |  |  |
| Smoking (0 = No, 1 = yes)                                                                                                                                                                  | -113          | 24 | < 0.001 |  |  |  |
| Weight at initial visit (kg)                                                                                                                                                               | 8             | 1  | < 0.001 |  |  |  |
| Mother's height (cm)                                                                                                                                                                       | 9             | 2  | < 0.001 |  |  |  |
| Age (yrs)                                                                                                                                                                                  | 1             | 21 | 0.76    |  |  |  |
| Multiparous (0 = No, 1 = yes)                                                                                                                                                              | 120           |    | < 0.001 |  |  |  |
| Ethnic group of origin (Ref. = Western European)                                                                                                                                           |               |    |         |  |  |  |
| North African                                                                                                                                                                              | 108           | 37 | 0.004   |  |  |  |
| Sub-Saharan African                                                                                                                                                                        | -140          | 52 | 0.007   |  |  |  |
| Other origin                                                                                                                                                                               | 19            | 33 | 0.560   |  |  |  |
| Educational level (Ref. = University)                                                                                                                                                      |               |    |         |  |  |  |
| Primary school                                                                                                                                                                             | -43           | 31 | 0.160   |  |  |  |
| Secondary school                                                                                                                                                                           | -65           | 25 | 0.008   |  |  |  |
| Technical school                                                                                                                                                                           | -50           | 33 | 0.130   |  |  |  |



| <b>Gritical Nomber</b>                            |                                                            |                   | 46                |
|---------------------------------------------------|------------------------------------------------------------|-------------------|-------------------|
| Example: Effect of chronic<br>multiple linear reg | hypertension on mean birth<br>ression (n = 1,938), France, | weight<br>1991-19 | values (g),<br>93 |
|                                                   | Am J Epidem                                                | iol 1997;14       | 5(8):689-95.      |
| Verieble                                          | h coofficient                                              | CE.               | Dyrahua           |

| Chronic hypertension (0 = No, 1 = yes)    |                                                                | -161            | 48       | < 0.001  |
|-------------------------------------------|----------------------------------------------------------------|-----------------|----------|----------|
| Smoking (0 = No, 1 = yes)                 | $\geq$                                                         | -113            | 24       | < 0.001  |
| Weight at initial visit (kg)              | Chron                                                          | ic hypertension | is of pr | incipal  |
| Mother's height (cm)                      | focus,                                                         | but other varia | bles are | included |
| Age (yrs)                                 | since the authors believed that they needed to be adjusted for |                 |          | at they  |
| Multiparous (0 = No, 1 = yes)             | Lincold                                                        |                 | u 101.   |          |
| Ethnic group of origin (Ref. = Western Eu |                                                                |                 |          |          |
| North African                             |                                                                | 108             | 37       | 0.004    |
| Sub-Saharan African                       |                                                                | -140            | 52       | 0.007    |
| Other origin                              |                                                                | 19              | 33       | 0.560    |
| Educational level (Ref. = University)     |                                                                |                 |          |          |
| Primary school                            | Primary school                                                 |                 | 31       | 0.160    |
| Secondary school                          |                                                                | -65             | 25       | 0.008    |
| Technical school                          |                                                                | -50             | 33       | 0.130    |

|  |  | _ |
|--|--|---|
|  |  |   |

| Critical Numbers 47                                                                                                                                                         |                                                                             |       |              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|--------------|--|--|
| Example: Effect of chronic hypertension on mean birth weight values (g),<br>multiple linear regression (n = 1,938), France, 1991-1993<br>Am J Epidemiol 1997;145(8):689-95. |                                                                             |       |              |  |  |
| Variable                                                                                                                                                                    | b coefficient                                                               | SE    | P value      |  |  |
| Chronic hypertension (0 p -values tell us whi                                                                                                                               | ch predictors                                                               | June  | < 0.001      |  |  |
| Smoking (0 = No, 1 = ye have no statistically s                                                                                                                             | have no statistically significant effect<br>on birth weight ( $p > 0.05$ ). |       |              |  |  |
| Weight at initial visit (kg) on birth weight (p > 0                                                                                                                         |                                                                             |       |              |  |  |
| Mother's height (cm)                                                                                                                                                        | 9                                                                           | 12    | < 0.001      |  |  |
| Age (yrs)                                                                                                                                                                   | 1                                                                           |       | 0.76         |  |  |
| Multiparous (0 = No, 1 = yes)                                                                                                                                               | 120                                                                         |       | < 0.001      |  |  |
| Ethnic group of origin (Ref. = Western European                                                                                                                             | )                                                                           |       |              |  |  |
| North African                                                                                                                                                               | 108                                                                         | 37    | 0.004        |  |  |
| Sub-Saharan African                                                                                                                                                         | -140                                                                        | 52    | 0.007        |  |  |
| Other origin                                                                                                                                                                | 19                                                                          | 33 🔻  | 0.560        |  |  |
| Educational level (Ref. = University)                                                                                                                                       |                                                                             | · / · | $\mathbf{V}$ |  |  |
| Primary school                                                                                                                                                              | -43                                                                         | 31    | 0.160        |  |  |
| Secondary school                                                                                                                                                            | -65                                                                         | 25    | 0.008        |  |  |
| Technical school                                                                                                                                                            | -50                                                                         | 33 <  | 0.130        |  |  |

|                                                                                                                                                                             |                                  |        |    | 48      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|----|---------|--|
| Example: Effect of chronic hypertension on mean birth weight values (g),<br>multiple linear regression (n = 1,938), France, 1991-1993<br>Am J Epidemiol 1997;145(8):689-95. |                                  |        |    |         |  |
| Variable                                                                                                                                                                    |                                  | b      | SE | P value |  |
| Chronic hyperter                                                                                                                                                            | Standard arrara can be used      | tto S1 | 48 | < 0.001 |  |
| Smoking (0 = N                                                                                                                                                              | calculate confidence interval    | for    | 24 | < 0.001 |  |
| Weight at initial                                                                                                                                                           | the b coefficients:              |        | 1  | < 0.001 |  |
| Mother's height                                                                                                                                                             |                                  |        | 2  | < 0.001 |  |
| Age (yrs)                                                                                                                                                                   | b ± 1.96 SE                      |        | 21 | 0.76    |  |
| Multiparous (0 =                                                                                                                                                            | No, 1 = yes)                     | 120    |    | < 0.001 |  |
| Ethnic group of                                                                                                                                                             | origin (Ref. = Western European) |        |    |         |  |
| North Afric                                                                                                                                                                 | can                              | 108    | 37 | 0.004   |  |
| Sub-Saha                                                                                                                                                                    | Iran African                     | -140   | 52 | 0.007   |  |
| Other origin                                                                                                                                                                |                                  | 19     | 33 | 0.560   |  |
| Educational level (Ref. = University)                                                                                                                                       |                                  |        |    |         |  |
| Primary school                                                                                                                                                              |                                  | -43    | 31 | 0.160   |  |
| Secondar                                                                                                                                                                    | y school                         | -65    | 25 | 0.008   |  |
| Technical                                                                                                                                                                   | school                           | -50    | 33 | 0.130   |  |
|                                                                                                                                                                             |                                  |        |    |         |  |



| <b>Critical Numbers</b>                                               |                                              |                                                   |                               | 49                                       |
|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------------|
| Example: Effect of chronic hyperten:<br>multiple linear regression (r | sion c<br>1 = 1,9                            | on mean birth<br>138), France, 1<br>Am J Epidemio | weight<br>991-199<br>1997;145 | <b>values (g),</b><br>93<br>5(8):689-95. |
| Variable                                                              |                                              | b coefficient                                     | SE                            | P value                                  |
| Chronic hypertension (0 = No, 1 = yes)                                |                                              | -161                                              | 48                            | < 0.001                                  |
| Smoking (0 = No, 1 = yes)                                             | $\geq$                                       |                                                   | ;                             | 0.001                                    |
| Weight at initial visit (kg)                                          | (Note the $0-1$                              |                                                   |                               | 0.001                                    |
| Mother's height (cm)                                                  | s height (cm) 0 is assigned to the reference |                                                   |                               |                                          |
| Age (yrs)                                                             | (control) o                                  |                                                   |                               | 0.76                                     |
| Multiparous (0 = No, 1 = yes)                                         |                                              | 120                                               |                               | < 0.001                                  |
| Ethnic group of origin (Ref. = Western Europ                          | ean)                                         |                                                   |                               |                                          |
| North African                                                         | -                                            | 108                                               | 37                            | 0.004                                    |
| Sub-Saharan African                                                   |                                              |                                                   | 52                            | 0.007                                    |
| Other origin                                                          |                                              | The referen                                       | pory is                       |                                          |
| Educational level (Ref. = University)                                 |                                              | explicitly de                                     | ined for                      | re                                       |
| Primary school                                                        |                                              | Calegonical                                       | 15.                           |                                          |
| Secondary school                                                      |                                              |                                                   | 20                            | 0.000                                    |
| Technical school                                                      |                                              | -50                                               | 33                            | 0.130                                    |

|                                                                                                                                                                             |               |    | 50      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|---------|--|
| Example: Effect of chronic hypertension on mean birth weight values (g),<br>multiple linear regression (n = 1,938), France, 1991-1993<br>Am J Epidemiol 1997;145(8):889-95. |               |    |         |  |
| Variable                                                                                                                                                                    | b coefficient | SE | P value |  |
| Chronic hypertension (0 = No, 1 = yes)                                                                                                                                      | -161          | 48 | < 0.001 |  |
| Smoking (0 = No, 1 = yes)                                                                                                                                                   | -113          | 24 | < 0.001 |  |
| Weight at initial visit (kg)                                                                                                                                                | 8             | 1  | < 0.001 |  |
| Mother's height (cm)                                                                                                                                                        | 9             | 2  | < 0.001 |  |
| Age (yrs)<br>Multiparous (0 = No, 1 = yes)<br>Ethnic group of origin (Ref. = Western Europea                                                                                |               |    |         |  |
| North African                                                                                                                                                               | 108           | 37 | 0.004   |  |
| Sub-Saharan African                                                                                                                                                         | -140          | 52 | 0.007   |  |
| Other origin                                                                                                                                                                | 19            | 33 | 0.560   |  |
| Educational level (Ref. = University)                                                                                                                                       |               |    |         |  |
| Primary school                                                                                                                                                              | -43           | 31 | 0.160   |  |
| Secondary school                                                                                                                                                            | -65           | 25 | 0.008   |  |
| Technical school                                                                                                                                                            | -50           | 33 | 0.130   |  |

| Critical Numbers                                                                                                                                                            |               |    | 51      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|---------|--|
| Example: Effect of chronic hypertension on mean birth weight values (g),<br>multiple linear regression (n = 1,938), France, 1991-1993<br>Am J Epidemiol 1997;145(8):689-95. |               |    |         |  |
| Variable                                                                                                                                                                    | b coefficient | SE | P value |  |
| Chr b coefficients quantify the effect                                                                                                                                      | -161          | 48 | < 0.001 |  |
| Smo of each predictor on birth weight.                                                                                                                                      | -113          | 24 | < 0.001 |  |
| Wei adjusting for all the other                                                                                                                                             | 8             | 1  | < 0.001 |  |
| Mot predictors                                                                                                                                                              | 9             | 2  | < 0.001 |  |
| Age (yrs)                                                                                                                                                                   | 1             | 21 | 0.76    |  |
| Multiparous (0 = No, 1 = yes)                                                                                                                                               | 120           |    | < 0.001 |  |
| Ethnic group of origin (Ref. = Western European)                                                                                                                            |               |    |         |  |
| North African                                                                                                                                                               | 108           | 37 | 0.004   |  |
| Sub-Saharan African                                                                                                                                                         | -140          | 52 | 0.007   |  |
| Other origin                                                                                                                                                                | 19            | 33 | 0.560   |  |
| Educational level (Ref. = University)                                                                                                                                       |               |    |         |  |
| Primary school                                                                                                                                                              | -43           | 31 | 0.160   |  |
| Secondary school                                                                                                                                                            | -65           | 25 | 0.008   |  |
| Technical school                                                                                                                                                            | -50           | 33 | 0.130   |  |



| <b>Critical Numbers</b>                                                                                                                                                     |               |    | 52      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|---------|--|
| Example: Effect of chronic hypertension on mean birth weight values (g),<br>multiple linear regression (n = 1,938), France, 1991-1993<br>Am J Epidemiol 1997;145(8):689-95. |               |    |         |  |
| Variable                                                                                                                                                                    | b coefficient | SE | P value |  |
| Chronic hypertension (0 = No, 1 = yes)                                                                                                                                      | -161          | 48 | < 0.001 |  |
| Smoking (0 = No, 1 = yes)                                                                                                                                                   | -113          | 24 | < 0.001 |  |
| Weight at initial visit (kg)                                                                                                                                                | 8             | 1  | < 0.001 |  |
| Mother's height (cm)                                                                                                                                                        | 19            | 2  | < 0.001 |  |
| b = 9 for mother's height                                                                                                                                                   | 1             | 21 | 0.76    |  |
|                                                                                                                                                                             | 120           |    | < 0.001 |  |
| An increase of 1 cm in mother's                                                                                                                                             |               |    |         |  |
| height                                                                                                                                                                      | 108           | 37 | 0.004   |  |
| is expected to produce an average                                                                                                                                           | -140          | 52 | 0.007   |  |
| Increase in birth weight of 9 grams                                                                                                                                         | 19            | 33 | 0.560   |  |
| $(10 \text{ cm} \rightarrow 90 \text{ grams})$                                                                                                                              |               |    |         |  |
| (room y oo grams)                                                                                                                                                           | -43           | 31 | 0.160   |  |
| Not really an impressive effect!                                                                                                                                            | -65           | 25 | 0.008   |  |
|                                                                                                                                                                             | -50           | 33 | 0.130   |  |

| Critical Numbers                                                                  |                                                   |                               | 53                                       |
|-----------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------------|
| Example: Effect of chronic hypertension of<br>multiple linear regression (n = 1,9 | on mean birth<br>138), France, 1<br>Am J Epidemio | weight<br>991-199<br>1997;145 | <b>values (g),</b><br>93<br>5(8):689-95. |
| Variable                                                                          | b coefficient                                     | SE                            | P value                                  |
| Chronic hypertension (0 = No, 1 = yes)                                            | -161                                              | 48                            | < 0.001                                  |
| Smol                                                                              | -113                                              | 24                            | < 0.001                                  |
| b = -161 for chronic hypertension                                                 | 8                                                 | 1                             | < 0.001                                  |
| An increase of 1 unit in obtania                                                  | 9                                                 | 2                             | < 0.001                                  |
| hypertension (from 0=No to 1=Yes)                                                 | 1                                                 | 21                            | 0.76                                     |
| is expected to produce an average                                                 | 120                                               |                               | < 0.001                                  |
| decrease in birth weight of 161 grams.                                            |                                                   |                               |                                          |
| i.e.                                                                              | 108                                               | 37                            | 0.004                                    |
| Mothers with chronic hypertension have                                            | 9 -140                                            | 52                            | 0.007                                    |
| bables with lower birth weights on                                                | 19                                                | 33                            | 0.560                                    |
| average,<br>the absolute mean difference is                                       |                                                   |                               |                                          |
| estimated to be 161 grams                                                         | -43                                               | 31                            | 0.160                                    |
| (95%CI: 161±1.96x48 → 67 to 255)                                                  | -65                                               | 25                            | 0.008                                    |
| lower for those mothers                                                           | -50                                               | 33                            | 0.130                                    |

| Critical Nombers                                                              |                                                   |                             | 54                                       |
|-------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|------------------------------------------|
| Example: Effect of chronic hypertension<br>multiple linear regression (n = 1, | on mean birth<br>938), France, 1<br>Am J Epidemio | weight<br>991-19<br>1997;14 | <b>values (g),</b><br>93<br>5(8):689-95. |
| Variable                                                                      | b coefficient                                     | SE                          | P value                                  |
| Chronic hypertension (0 = No, 1 = yes)                                        | -161                                              | 48                          | < 0.001                                  |
| Smoking (0 = No, 1 = yes)                                                     | -113                                              | 24                          | < 0.001                                  |
| Weight at initial visit (kg)                                                  | 8                                                 | 1                           | < 0.001                                  |
| Mother's height (cm)                                                          | 9                                                 | 2                           | < 0.001                                  |
| Age (yrs)                                                                     | 1                                                 | 21                          | 0.76                                     |
| Multiparous (0 = No, 1 = yes)                                                 | 120                                               |                             | < 0.001                                  |
| Ethnic group of origin (Ref. = Western European)                              |                                                   |                             |                                          |
| North African                                                                 | 108                                               | 37                          | 0.004                                    |
| Sub-Saharan African                                                           | -140                                              | 52                          | 0.007                                    |
| Other origin                                                                  | 19                                                | 33                          | 0.560                                    |
| h = 140                                                                       |                                                   |                             |                                          |
| 0 = -140                                                                      | -43                                               | 31                          | 0.160                                    |
| How would you interpret this?                                                 | -65                                               | 25                          | 0.008                                    |
|                                                                               | -50                                               | 33                          | 0.130                                    |





| Critical              | Nombers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56 |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                       | Common Regression Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Y<br>X <sub>1</sub> , | = outcome (response) variable $X_2, X_3, \ldots$ = explanatory predictors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Model                 | Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Linear regression     | Mean of $Y = a + b_1X_1 + b_2X_2 + b_3X_3 + \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Logistic regression   | Log(odds) of $Y = a + b_1X_1 + b_2X_2 + b_3X_3 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Poisson regression    | Log(incidence rate) of $Y = a + b_1X_1 + b_2X_2 + b_3X_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +  |
| Cox regression        | Log(hazard rate) of $Y = a + b_1X_1 + b_2X_2 + b_3X_3 + $ | ·  |
|                       | All "linear" models!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |





|                                                | No. (%) of patients |              | The based of the second second |       |                      |       |
|------------------------------------------------|---------------------|--------------|--------------------------------|-------|----------------------|-------|
|                                                | Died                | Survived     | Univariate ana                 | dysis | Munivariate analysis |       |
| Factor                                         | (n = 111)           | (n = 1,721)  | OR (95% CI)                    | P     | aOR (95% CI)         | Р     |
| Male sex                                       | 60 (54.1)           | 920 (53.5)   | 1.0 (0.7-1.5)                  | .903  |                      |       |
| Age ≥65 years                                  | 80 (72.1)           | 876 (50.9)   | 2.5 (1.6-3.8)                  | <.001 |                      |       |
| Emergency admission                            | 91 (82.0)           | 1,141 (66.3) | 2.3 (1.4-3.8)                  | .001  |                      |       |
| Primary admission diagnosis <sup>a</sup>       |                     |              |                                |       |                      |       |
| Cancer                                         | 35 (31.5)           | 195 (11.3)   | 3.6 (2.4-5.5)                  | <.001 |                      |       |
| Respiratory system disease                     | 23 (20.7)           | 191 (11.1)   | 2.1 (1.3-3.4)                  | .003  | 2.3 (1.3-4.2)        | .006  |
| Genitourinary system disease                   | 2 (1.8)             | 123 (7.1)    | 0.2(0.1-1.0)                   | .046  |                      |       |
| Digestive system disease                       | 7 (6.3)             | 202 (11.7)   | 0.5(0.2-1.1)                   | .087  |                      |       |
| McCabe-Jackson classification <sup>b</sup>     |                     |              |                                |       |                      |       |
| Nonfatal disease                               | 34 (30.6)           | 1,473 (86.3) | Reference                      |       | Reference            |       |
| Ultimately fatal disease                       | 52 (46.8)           | 195 (11.4)   | 11.6 (7.3-18.3)                | <.001 | 4.9 (2.9-8.3)        | <.001 |
| Rapidly fatal disease                          | 25 (22.5)           | 39 (2.3)     | 27.8 (15.1-50.9)               | <.001 | 8.7 (4.3-17.6)       | <.001 |
| Charlson comorbidity index                     |                     |              |                                |       |                      |       |
| 0-1                                            | 26 (23.4)           | 1,116 (64.8) | Reference                      |       | Reference            |       |
| 2-4                                            | 49 (44.1)           | 465 (27.0)   | 4.5 (2.8-7.4)                  | <.001 | 2.2 (1.3-3.9)        | .006  |
| 5-12                                           | 36 (32.4)           | 140(8.1)     | 11.0 (6.5-18.8)                | < 000 | 2.9 (1.5-5.6)        | .001  |
| Karnofsky functional status index <sup>e</sup> |                     |              |                                |       |                      |       |
| 8-10                                           | 16 (14.4)           | 999 (58.5)   |                                |       | Reference            |       |
| 0-7                                            | 95 (85.6)           | 710 (41      | 14.3)                          | <.001 | 3.2 (1.8-5.7)        | <.001 |
| Neutropenia                                    |                     |              |                                | .003  |                      |       |
| Juderwent P _ OB _ 2                           | 2 for 2             | -4 comor     | hidities                       | <.001 |                      |       |
| Exposed to a                                   |                     | 1001101      |                                | <.001 | 4.2 (2.3-7.5)        | <.001 |
| Developed n $e^{b} = OR = 2$                   | 9 for 5-            | 12 como      | rbidities                      | <.001 | 3.6 (2.1-6.1)        | <.001 |













|                                               | 3.5/ASU2 I                                      | nalaria vac                                  | cine                                                           | Lancet 2001; 358: 1927-34                                     |
|-----------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| Cox regression                                | ·                                               | Number<br>developing para-<br>sitaemia/total | Crude hazard<br>ratio (95% CI)*                                | Adjusted hazard<br>ratio (95% CI)†                            |
|                                               | Group<br>RTS,S/AS02<br>Control                  | 81/131 (62%)<br>80/119 (67%)                 | 1<br>1·30 (0·95–1·77)‡                                         | 1<br>1·51 (1·09–2·11)                                         |
|                                               | Village<br>Bakadagi<br>Bassending<br>Hela Kunda | 42/77 (55%)<br>15/28 (54%)<br>17/24 (71%)    | 1<br>1·47 (0·81–2·65)<br>1·45 (0·82–2·54)<br>2·64 (4.57, 4.25) | 1<br>1·25 (0·69–2·27)<br>1·60 (0·90–2·84)<br>0.47 (4.44.4.22) |
| e <sup>b</sup> = HR = <b>0</b> .              | . <b>59</b> for 1                               | .0 - 2.7 mg                                  | /L 1-2.57)<br>1-2.80)                                          | 2·47 (1·44-4-23)<br>2·24 (1·38-3·63)<br>1·87 (1·15-3·06)      |
| e <sup>b</sup> = HR = <b>0</b> .<br>How would | . <b>51</b> for 2.<br>d you inte                | 7- 42.0 mg<br>erpret this?                   | /L<br>→1·24)                                                   | 1<br>0·93 (0·54–1·58)                                         |
|                                               |                                                 |                                              |                                                                |                                                               |
|                                               | 20-24<br>25-26<br>37-45                         | 44/0-<br>31/63 (49%)                         | 0.67 (0.44–1.02)<br>60 (0.40–0.92)<br>0.21–0.54)               | 1<br>0.67 (0.43-1.05)<br>0.70 (0.44-1.11)<br>0.36 (0.21-0.60) |









#### **Gritical Numbers**

#### 67

#### **Recommended Reading:**

• Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. **Prognosis and prognostic research: what, why, and how?** BMJ 2009;338:b375. Available at:

http://www.bmj.com/content/338/bmj.b375

- Worster A, Fan J, Ismaila A. Understanding linear and logistic regression analyses. CJEM 2007;9(2):111-3.Available at: http://cjem-online.ca/v9/n2/p111
- Walters SJ. What is a Cox model? Available at http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/c ox\_model.pdf

#### Videos

 Regression Introduction by Marcello Pagano. Available at: https://youtu.be/0t9m6mLLps8

#### **Gritical Number**

68

#### **Further Reading:**

• TripepiG , Jager KJ, Dekker FW Zoccali C. Linear and logistic regression analysis. Kidney International 2008;73:806–810. Available at:

http://www.nature.com/ki/journal/v73/n7/full/5002787a.html

 vanDijk PC, Jager KJ, Zwinderman AH, Zoccali C, Dekker FW. The analysis of survival data in nephrology: basic concepts and methods of Cox regression. Kidney International 2008;74(6):705-9. Available at:

http://www.nature.com/ki/journal/v74/n6/full/ki2008294a.html

 Campbell MJ, Swinscow TDV. Statistics at Square One, 9th Edition, 1997: chapters 11 and 12. Available from: http://www.bmj.com/about-bmj/resourcesreaders/publications/statistics-square-one